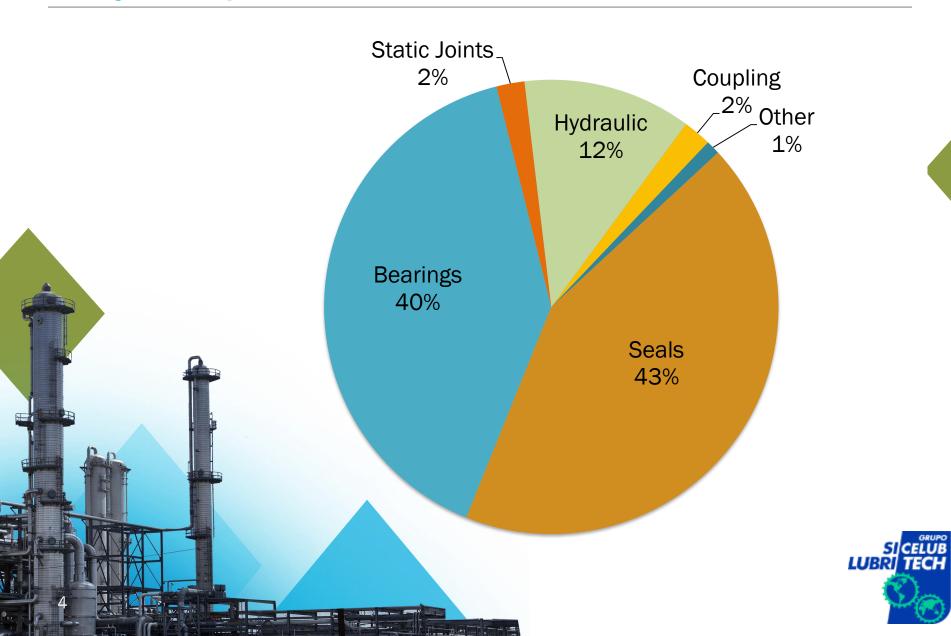
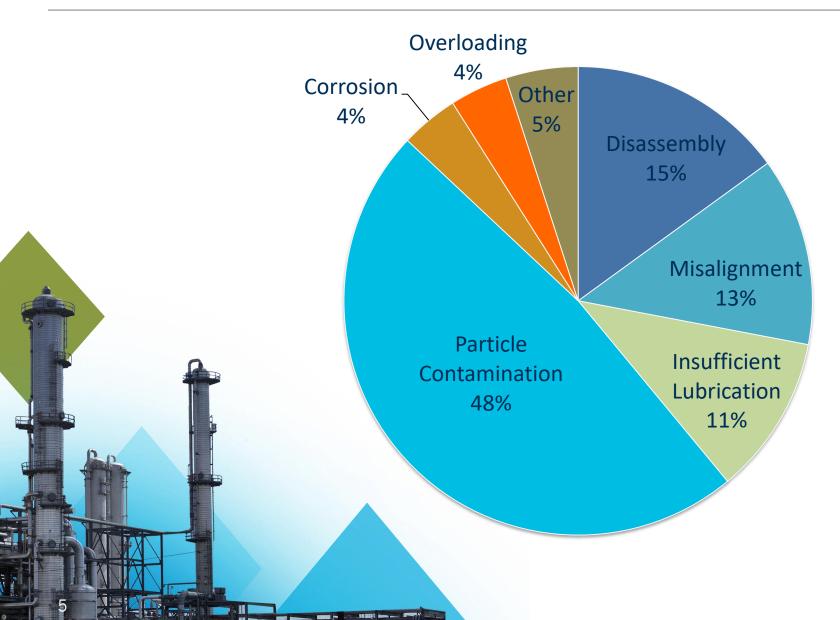

Sicelub Iberico SL

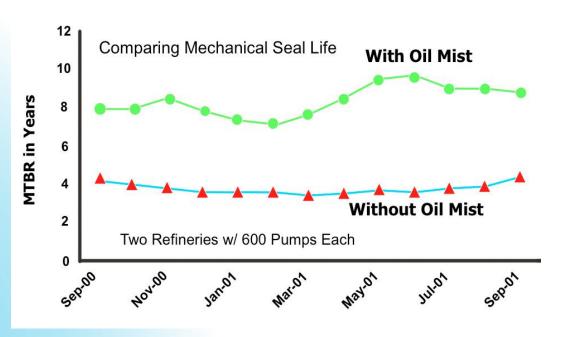
In absence of Oil Mist



Typical Sump Lubrication



Why Pumps Fail?


Why Bearings Fail

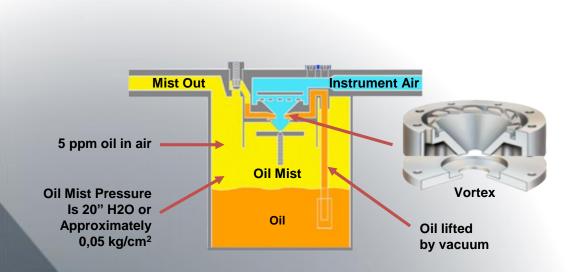
Why Mechanical Seals Fail?

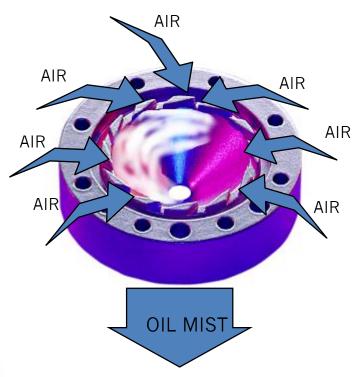
Oil Mist Generation & Delivery

What do you need to generate Oil Mist?

Instrument air, i.e. dry air:

- Minimum supply pressure: 40 PSI, 2.81 kg/cm²
- Maximum supply pressure: 150 PSI, 10.54 Kg/cm²
- Humidity: Maximum recommended dew point -4° C below minimum all-year temperature.




Paraffinic or synthetic oil ISO VG 32-150

No EP Additives or Viscosity Modifiers

What is Oil Mist?

Oil mist will not support combustion or explode.

SICELUB LUBRI TECH

What is Oil Mist?

- Oil Mist Density: 1 part oil of 200,000 parts air (5ppm)
- Very homogeneous particle size
- Oil particles are 3 microns maximum (Dry Mist)
- Generator outlet pressure 20" water column (50mbar)
- Average temperature 17°C
- Clean mixture
- Non flammable
- Non toxic
- Ability to convey 150m with minimum condensation

IVT Oil Mist Generator

Oil Mist Delivery

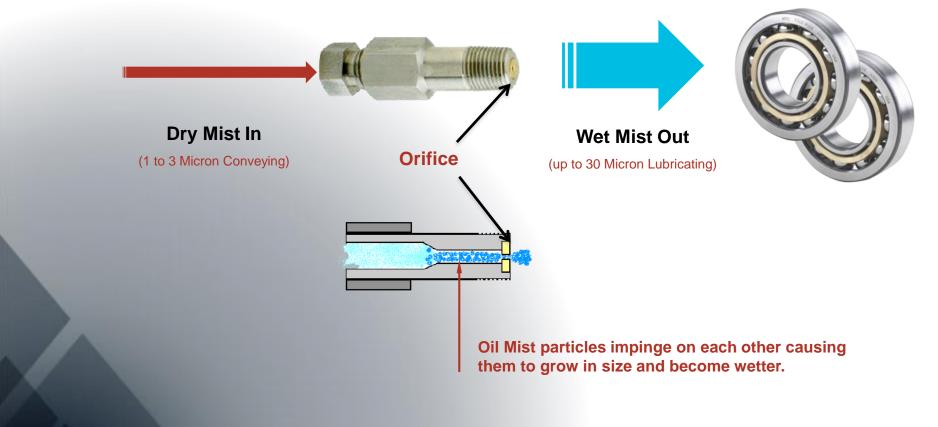
Oil Mist Particle Sizes

Application & Lubrication

15 Microns

Above Wet
Mist For
Lubrication

Generation & Distribution


3 Microns
Below
Dry Mist For
Conveying

Converting Oil Mist

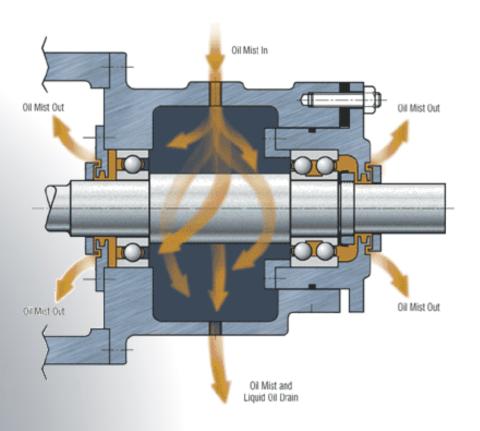
Oil Mist Lubrication

Oil Mist Benefits

The impact of Oil Mist

Oil Mist is the Ultimate Oil Filter

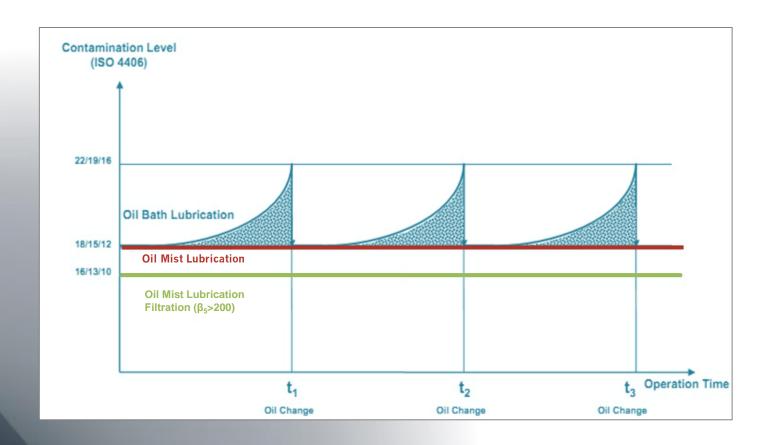
- The vortex acts as a cyclone expelling the particles while generating the mist
- Typical cleanliness level ISO 4406 16/13/10



The impact of Oil Mist

Oil Mist is the Ultimate Bearing Protector

Positive Pressure 50mbar



The impact of Oil Mist

Estimated Life Extension Table

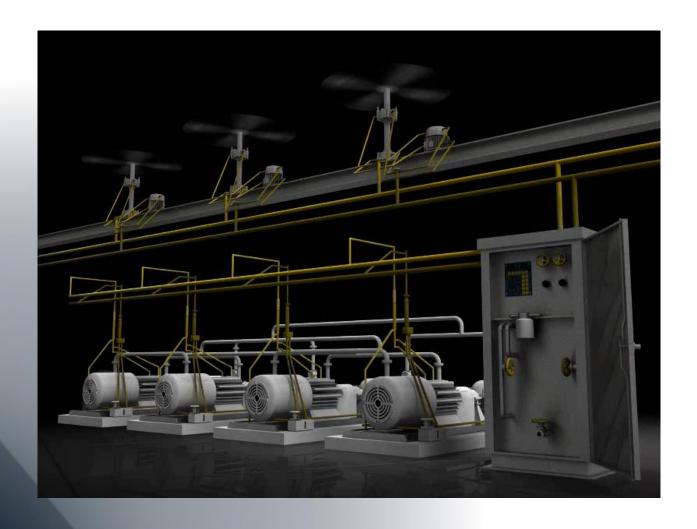
										rgeted Clea												>10 >10 >10 >10 >10 >10 >10 >10 >10 >10	
	. '	20	/17	19/1	6	18/15		17/14		16/13		15/12		14/11	-	13/10		12/9	•	11/8		10/7	
	26/23	5	3		3.5		1 > '			-	>10		>10	-	>10	>10			>10	>10			
		4	2.5		3		6.		-		8.5		_				>10	10	_	>10			
	25/22	3	2.5	3.5	3 2.5		9 3 5		1		>10 8	-	>10 9	7 6	>10 10	-	>10 >10	>10 9	>10 >10	>10 >10			
	24/21	3	2		2.5		7	4	-		>10			_	>10		>10		>10	>10			
	24/21	2.5	1.5	3	2	4 2.5	5	3	3	6.5 4	7.5	5	8.5	6	9.5	7	>10	8	>10	10	>10	>10	
de)	23/20	2	1.5		2		5		3	7 3.5		_	>10		>10		>10	8			>10		
၂ ပိ		1.7	1.3		1.5		2 3.					3.5	7	4	8	5	10	6.5	_		>10		
(ISO Code)	22/19	1.6 1.4	1.3 1.1	_	1.6 1.3		3	2.5		5 3 3.5 2.5		3.5	8 5.5	3.5	>10 7	5 ⊿	>10 8	6 5	>10 10	7 5.5	>10 >10		
		1.3	1.2		1.5	_	3	-	-	4 2.5		3	7	3.5	_	4	>10	5	>10	7	>10		
Existing Machine Cleanliness	21/18	1.2	1.1		1.3		1	/ /			3.5	_	١.	3		3.5	7	4	9	5.5			
Ë	20/17			1.3	1.2	/	2	/ /				2.5		3		4		5	>10	7	>10	9	
ear				1.2	1.05	_	1.		-	2.3 1.7			3.5	2.5		3	6	4	8	5.5		7	
<u>5</u>	19/16					1.3 1.2 1.2 1.1		g / 1.5				-	4	2.5	5 3.5	3	7	4	9	6	>10	8	
<u> </u>		_	-/			/1.2 1.	-	.3 / 1.3	-	1.8 1.5 1.6 1.5		1.7 1.7		2	3.5	2.5 2.5		3.5	_	4.5 4.5	>10	6	
ach	18/15		Hvd	raulic		Rolling	1.	/		1.5 1.3			_	1.7	3	2.3	3.5	2.5	Ι'	3.7	8	5	
Σ	17/14			Diesel		lement	Т		•	1.3 1.2				1.7	3	2		2.5	_	3	8	5	
l ii			Eng	gines		earings			ŀ	1.2 1.1	1.5	1.3	1.8	1.5	2.3	1.7	3	2	4	2.5	6	3.5	
Kist	16/13						П	/	I		1.3		1.6	1.5		1.7	3	2	4	3.5	6	4	
G				urnal		ar Boxes	4		4		1.2	1.1	_	1.3	_	1.5	_		3.7	_	4.5	3.5	
	15/12		Bearings a and Turbo		nd Other			ı				1.3 1.2	1.2 1.1	1.6	1.5 1.4	2 1.8	1.7	3 2.3	2 1.8	4	2.5 2.2		
				hinery			+		t				1.2	1.1	1.3		_	1.6	_	1.8		2.2	
	14/11		Iviac			_			ı						1.3				1.9	1.5		1.8	
	13/10			Exar	nple		T		T								1.4	1.2	1.8	1.5	2.5	1.8	
	13/10																1.2	1.1	1.6	1.3	2	1.6	

Superior Cleanliness Levels

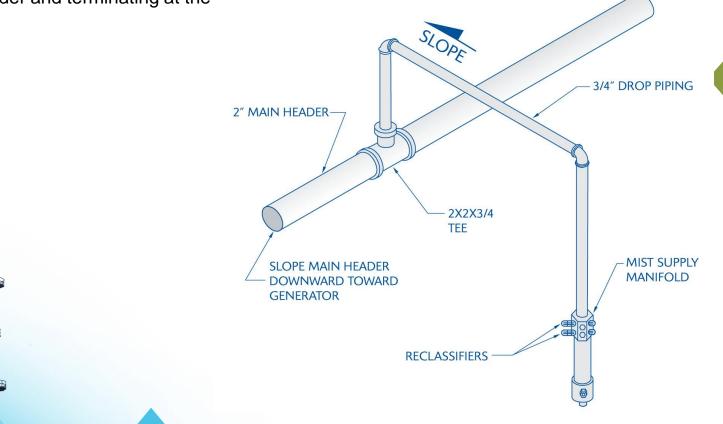
Temperature Benefits

- Bearing temperatures decline typically 8-10 degrees
 Celsius with pure oil mist versus liquid oil lube
- For every 10 degree drop, the bearing L₁₀ life increases 11%

Other benefits


- Resulting from MTBF increase:
 - Plant availability reduced loss of profit
 - Reduced maintenance costs
 - Reduced insurance premiums
- Automation of the lubrication process
- Lower consumption of lube oil, cooling water, energy
- Increased personal safety
- Increased asset safety

Distribution System Layout


How does an Oil Mist system look like?

Application Drops

Each piece of equipment to be lubricated should be installed with a drop point originating from the upper header and terminating at the mist manifold

Mist System Designs

Closed Loop System

Open Loop System

Oil Mist Installed

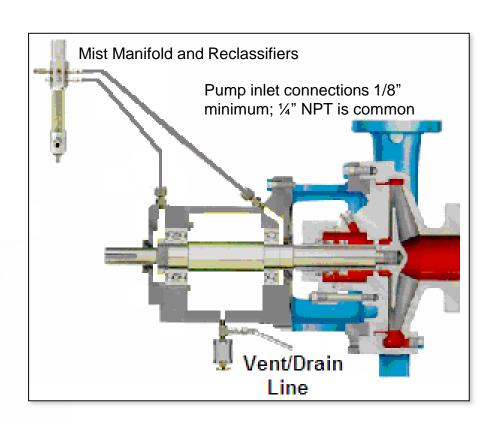
Applying Oil Mist

Applying Oil Mist

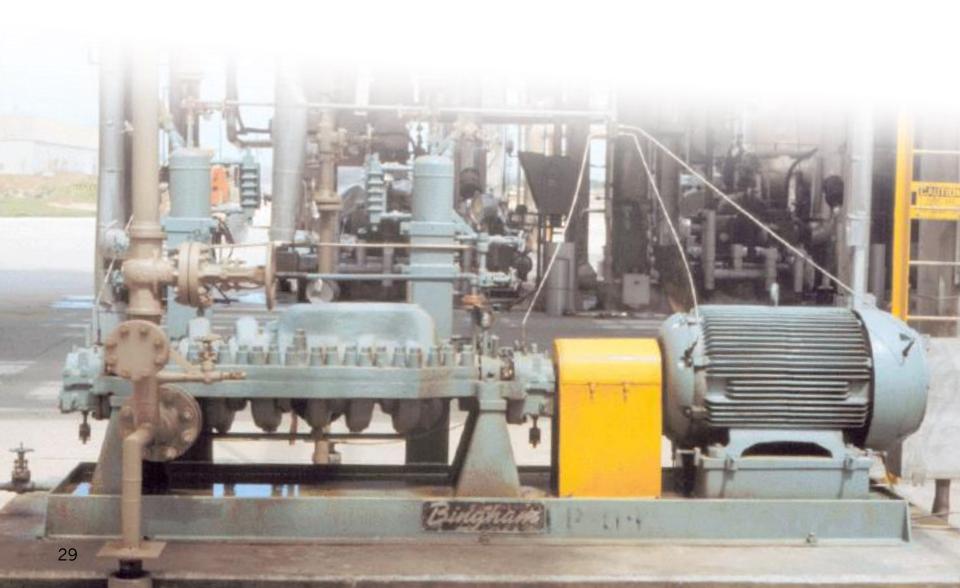
Purge Mist

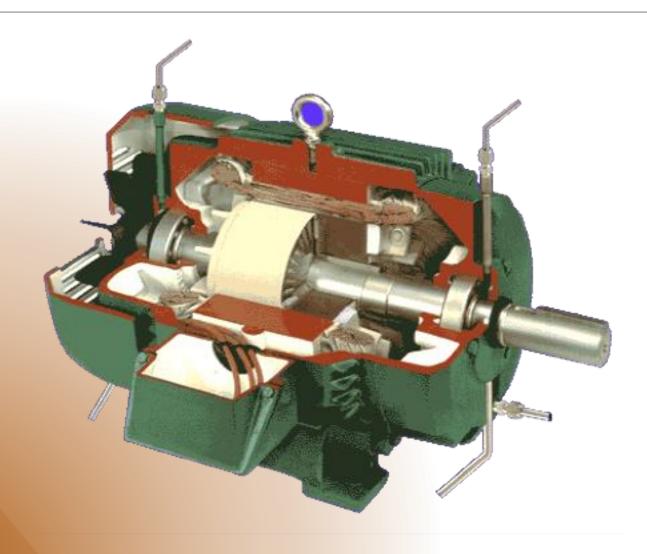
- Also called "wet sump"
- Used to protect the bearing housing
- Not primary means of lubrication

Pure Mist

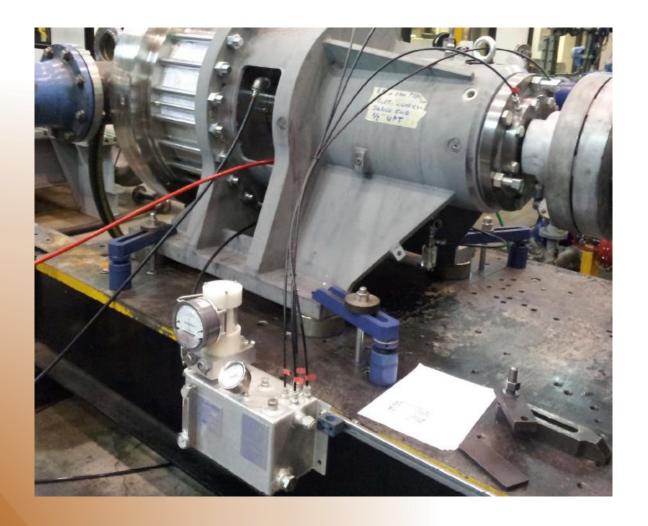

- Also called "dry sump"
- Oil mist provides lubrication
- No oil sump for lubrication

Pure Oil Mist


Pure mist lubricates operating equipment and protects and preserves standby equipment



Between Bearing Pump & Motor Driver

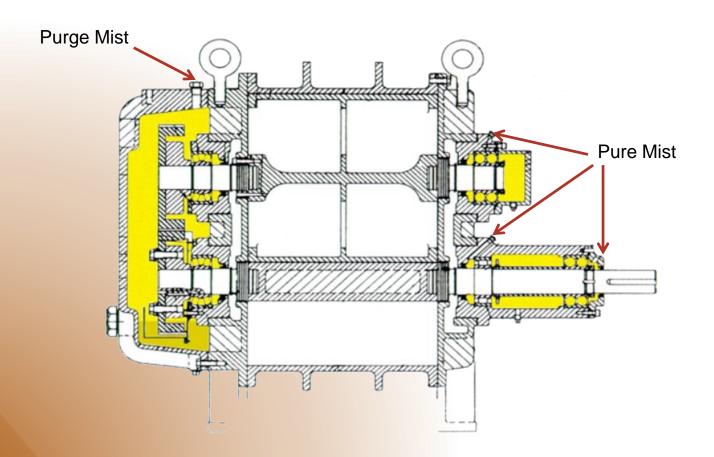


Motors

Liquid Ring Compressors

Pillow Block Bearings

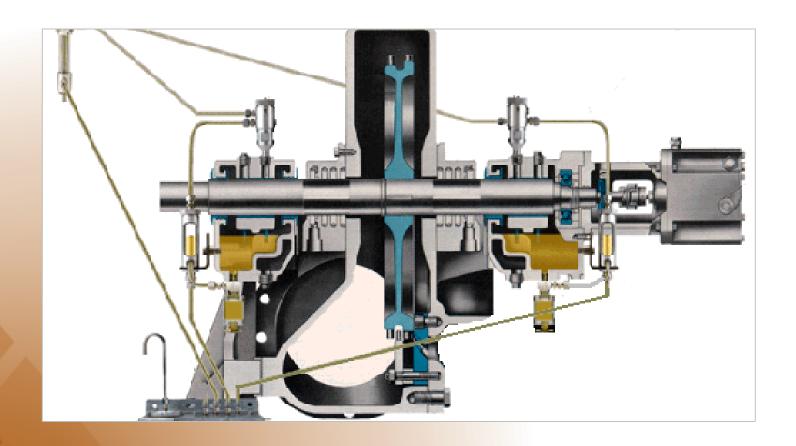
OH Pump, Turbine Driver & Gear Box



Rotary Lobe Blowers

Rotary Lobe Blowers

Pure & Purge Mist Application



Cooling Tower Gear Box

Steam Turbine

Machinery Storage

Machinery Preservation Yard

Aerial View of Oil Mist Preservation Yard in Thailand

Long Term Storage

Economic Justification

Data gathering – real case studies

Data gathering – real case studies

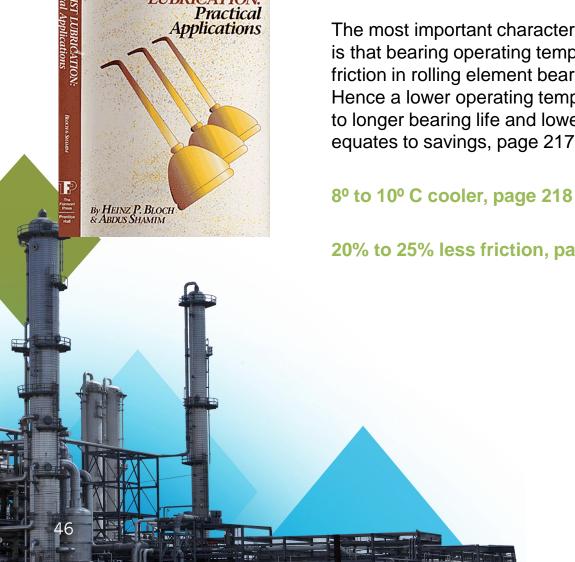
Maintenance Cost Analysis

MAINTENANCE COSTS

MAINTENANCE COSTS

	2 YEARS BEFORE OIL MIST	2 YEARS AFTER OIL MIST
611-G-1A	14.868 €	6.936 €
611-G-1B	11.242 €	8.814 €
611-G-1C	463 €	0€
611-G-2A	10.909 €	0€
611-G-2B	267 €	0€
611-G-2C	14.463 €	601 €
611-G-6	7.256 €	0€
611-G-4A	6.753 €	6.365 €
611-G-4B	1.915 €	310 €
611-G-3A	27.441 €	19.438 €
611-G-3B	24.715 €	321 €
651-G-2A	147 €	257 €
651-G-2B	0€	5.991 €
651-G-8A	10.124 €	842 €
651-G-8B	234 €	10.097 €
652-G-1A	10.500 €	9.302 €
652-G-1B	15.683 €	1.889 €
652-G-4A	8.136 €	0€
652-G-4B	0€	0€
652-G-5A	0€	3.689 €
652-G-5B	0€	0€
652-G-6A	467 €	6.716 €
652-G-6B	27.884 €	4.796 €
652-G-7A	4.739 €	11.562 €
652-G-7B	7.496 €	6.961 €
_		
Total	205.704 €	104.887 €
	4114,0822	2097,73

Investment calculator



Reference Information

References

Pure Mist is Preferred

The most important characteristics of pure mist is that bearing operating temperatures and friction in rolling element bearings is reduced. Hence a lower operating temperature equates to longer bearing life and lower energy loss equates to savings, page 217.

20% to 25% less friction, page 218

References

Pure Mist is Preferred

Reliability: Documented evidence proves that pumps can run more than eight hours after the oil mist flow has ceased. Improved reliability of Oil Mist Generators supports pure oil mist.

Back-Up Units: Usually installed for emergency purposes when pure mist is used on a large scale.

Questions?

info@sicelub.com

