

RELIABILITY SERVICES

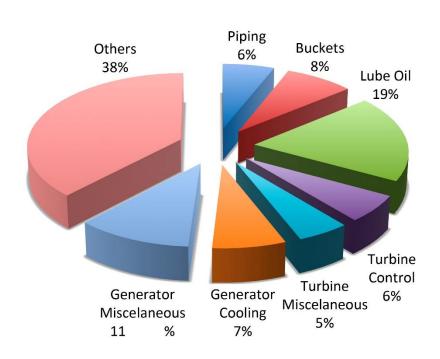
Tribological Reliability in Turbomachinery

Predictive and Proactive Maintenance

Javier Vázquez-Dodero Lubmat 2016, Bilbao

Importance of Lubrication

The importance of lubrication

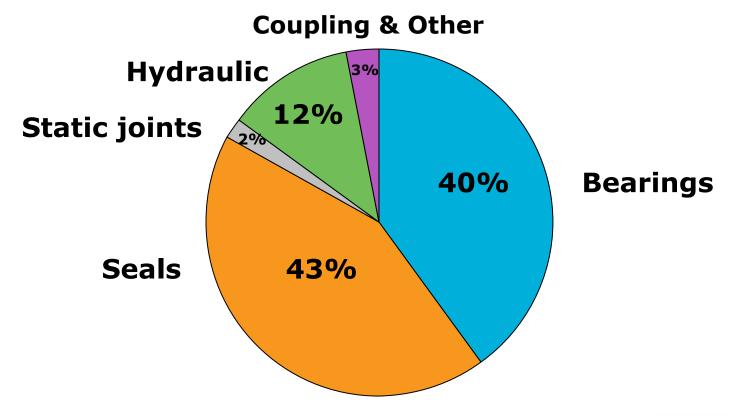

The importance of lubrication

	20		19/1		18/15		17/		16/13			/12.		4/11.		3/10.	12/9			11/8.		0/7.
6/23	5	3	7	3.5	9	4	>10	5	>10	6	>10	7.5	>10	9	>10	>10	>10	>10	>10	>10	>10	>10
	4	2.5		3	6	3.5		4	7.5	5	8.5	6.5	10	7	>10		>10	10	>10	>10	>10	>10
	4	2.5	5	3	7	3.5	9	4	>10	5	>10	6	>10	7	>10	9	>10	>10	>10	>10	>10	>10
22	3	2	3.5	2.5	4.5	3	5	3.5	6.5	4	8	5	9	6	10	7.5	>10	9	>10	>10	>10	>10
	3	2	4	2.5	6	3	7	4	9	5	>10	6	>10	7	>10		>10		>10		>10	>10
/21																						
	2.5	1.5 1.5	3	2	4	2.5	5	3	6.5 7	4	7.5	5	8.5	6	9.5		>10		>10	10	>10 >10	>10 >10
20	2	1.5	3	2	4	2.5	5	3	′	3.5	9	4	>10	5	>10	6	>10	8	>10	9	>10	>10
	1.7	1.3	2.3	1.5	3	2	3.7	2.5	5	3	6	3.5	7	4	8	5	10	6.5	>10	8.5	>10	10
	1.6	1.3	2	1.6	3	2	4	2.5	5	3	7	3.5	8	4	>10	5	>10	6	>10	7	>10	>10
/19	1.4	1.1	1.8	1.3	2.3	1.7	3	2	3.5	25	4.5	3	5.5	3.5	7	4	8	5	10	5.5	>10	8.5
	1.3	1.2		1.5	2	1.7	3	2	4	2.5	5	3_		3.5	9		>10	5	>10	7	>10	10
/18 📜										→												
	1.2	1.1	1.5	1.3		1.4	2.2	1.6	3	2		2.5	_	3	5 7	3.5	7 9	4 5	9 >10	5.5	10 >10	8
17			1.3	1.2	1.6	1.5	2	1.7	3	2	4	2.5	5	3	<u> </u>	•	_					
			1.2	1.05	1.5	1.3	1.8	1.4	2.3	1.7	3	2	3.5	4	3x	Bea	rina	Lif	fe	Exte	nsi	on
					1.3	1.2	1.6	1.5	2	1.7	3	2	4	1			9					
6					1.2	1 1	1.5	13	1.8	15	2.2	1.7	3	2	3.5	2.5	5	3.5	7	4.5	9	6
					1.2	1.1	1.3		1.6	1.5		1.7	3	2	4	2.5	5	3	7		>10	6
15																						
							1.2	1.1	1.5		1.8		2.3	1.7	3		3.5		5.5	3.7	8	5
/14									1.3	1.2	1.6	1.5	2	1.7	3	2	4	2.5	6	3	8	5
									1.2	1.1	1.5	1.3	1.8	1.5	2.3	1.7	3	2	4	2.5	6	3.5
											1.3	1.2	1.6	1.5	2	1.7	3	2	4	3.5	6	4
/13											1.2	1 1	1.5	13	1.8	1.5	23	1.8	37	3	4.5	3.5
			Máquinas			\top					1.2	1.1	1.3	1.2	1.6	1.5	2	1.7	3	2	4	2.5
/12.		1	Hidráulicas	y R	odamientos																	
			Motores										1.2	1.1	1.5	1.4			2.3	1.8	3	2.2
11.			humaceras		Cajas de										1.3	1.3	1.6	1.6	2	1.8	3	2
• • •		Tu	rbomaquina	aria Eng	ranes y otros										1.3	1.2	1.6	1.4	1.9	1.5	2.3	1.8
																	1.4	1.2	1.8	1.5	2.5	1.8
10.																	1.2	1 1	1.6		F	GX
																	1.4	1.1	1.0		4	7.0

Reliability and Lubrication

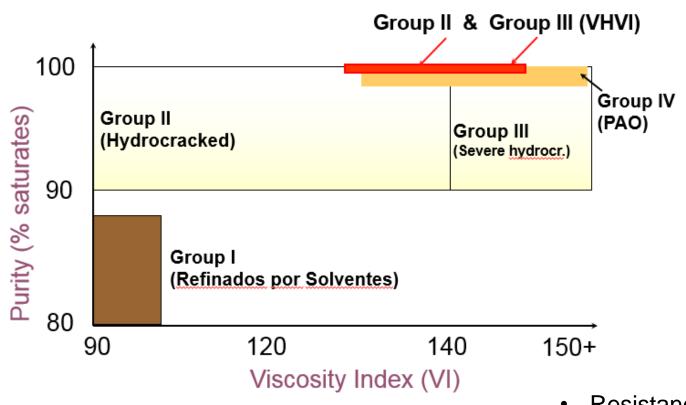
Reliability and Lubrication. Turbines

ered the lifeblood of the operation. Any problem requiring an unexpected shutdown of the main turbine is likely to cause a significant unplanned outage, potentially resulting in millions of dollars of downtime costs. According to a 1991 study by General Electric (GE), turbines contribute on average 20 percent of all forced outages in a conventional power plant. Among this 20 percent, GE noted that 19 percent of turbine/generator problems were associated with the lube oil system. For this reason, monitoring turbine oils has become commonplace in the power generation industry.

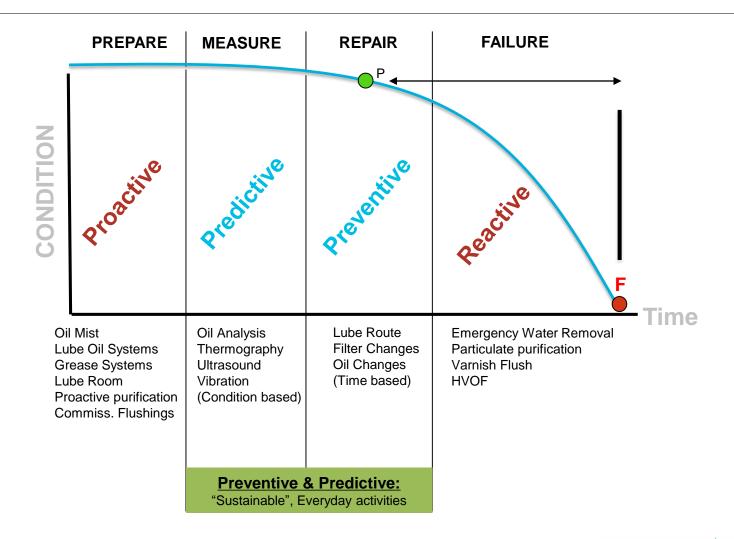

http://www.machinerylubrication.com/Read/300/turbine-oil-performance

- 1 out of 5 failures in Turbines is associated with the lube oil system.
- Oil changes cost is less than 5% of total cost of failure!

Reliability and Lubrication. Pumps

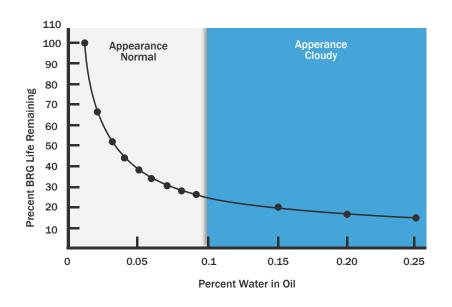

Over 80% of pump failures attributed to bearing and seal failures

Reliability Strategies


Selecting the right base oil. API Groups

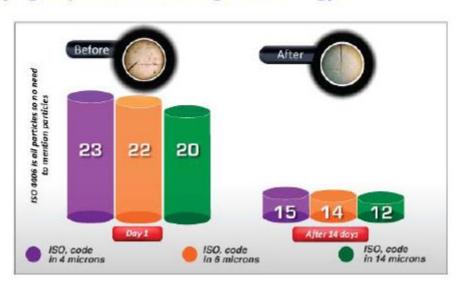
- Resistance to oxidation
- Water and Air Separation
- Thermal stability

The Reliability Opportunity


Contamination Control Services

Oil Purification

- Increases customer machinery reliability, reducing failure due to poor lubricant condition
- Eliminates the need for oil changes by maintaining "like-new" oil
- Reduces potential wear and breakdown due to mechanical simplicity and fewer moving parts
- Reduces particle filtration
- Eliminates the need for new oil purchases and reduces oil inventories
- Minimizes utility requirements; only electrical power required for water removal, or a nitrogen supply for degassing



High Speed Oil Flushing Goals

Objectives

Cleaning of Lubrication and Control Systems (High Speed Oil Flushing & Cleaning).®

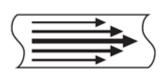
Reliability: Assure the removal of all particles from the system to reduce risks during equipment start-up and prevent severe premature failure. A higher circulating flow rate in the Flushing and better quality filter elements, result in greater reliability.

Availability: To finish the cleaning in the least possible time, in order to make the equipment available faster and reduce programmed down-time. The Flushing is carried out according to ASTM D-6439-05 standard, which positively impacts the Availability of the Equipment, Increasing Quality Production.

High Speed Oil Flushing Features

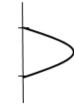
Turbulent Regime → Reynolds Number Re > 4000

Dirt, contamination & deposits on the inner side of the pipe wall


Re = 21,200 x Q / $(_{y}$ x d)

Q - System Flow (I/min)

γ – Kinematic Viscosity (cSt, mm²/s)

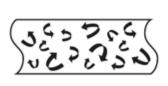

d – System Inner Diameter (mm)

Lube system → Laminar Flow → Reynolds Number Re < 2000

Laminar flow

Re < 2000

Velocity Profile


Speed = 0 on inner side of pipe wall

Cross sectional view

Contact Surface < 100%

External Equipment → Turbulent Flow → Reynolds Number Re >> 4000

Turbulent flow

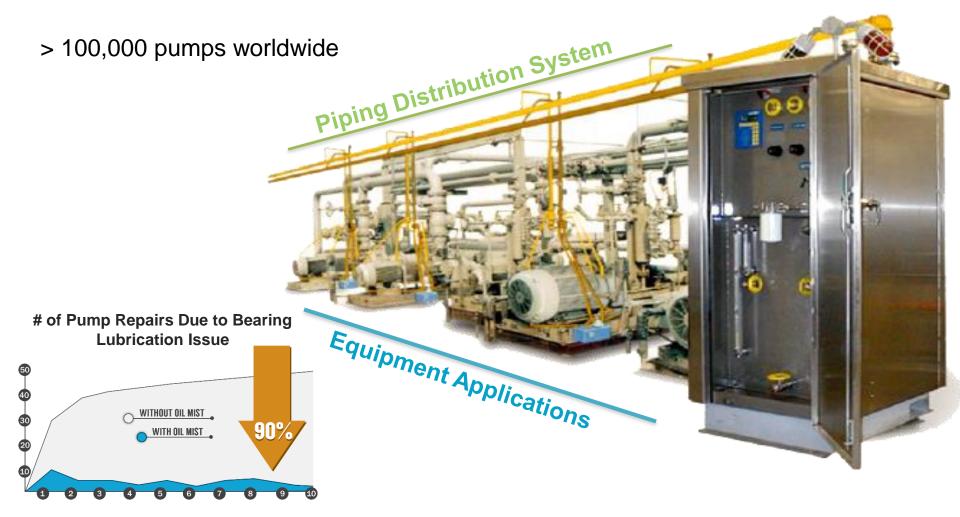
Re > 4000

Velocity Profile

Speed > 0 on inner side of pipe wall

Cross sectional view

Contact Surface = 100%


Oil Analysis

- Select critical equipment
- Select frequency
- Define alarm limits
- Consider sampling points

Oil Mist Systems

Case Studies. Benefits

Case Study. Oil Purification Before Program.

Average conditions of oil lubricant in more than 30 Gas Turbines in Gulf of México.

- High Varnish Potential due to high presence of particles that causes high temperatures in the oil lubricant.
- Presence of H₂S from the seal system. This gas contaminates the oil decreasing its viscosity and flash point.
- 3. High presence of particles. ISO 4406 high values as 23/19/15. Average. 20/17/12.
- 4. Water content average around 250 ppm.
- 5. Oil lubricant is changed every 3 years average.

Case Study. Oil Purification After Program.

Average conditions of oil lubricant in more than 30 Gas Turbines in Gulf of México.

- Low Varnish Potential in the oil lubricant. Temperatures of bearings have decreased 5 ° C.
- Lower presence of gases. Flash Point at normal values.
- 3. Lower presence of particles. Average. 16/14/11.
- 4. Water content average around 50 ppm.
- Oil Change frequency extended.

Oil Purification Benefits

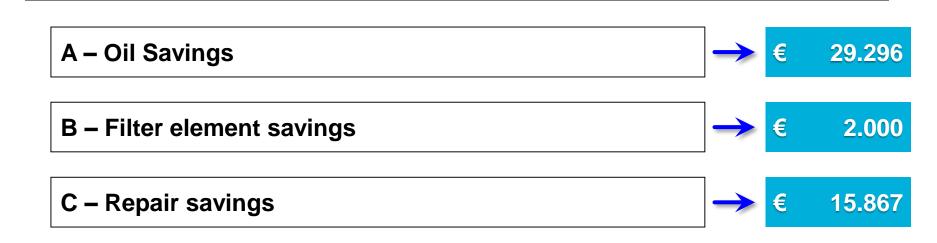
Ítem	Before	After	Result		
Oil Change	Around	Estimated	Savings in		
Frequency	3-5 years	5-10 years	10 kUSD/year/turbine		
Varnish Potential	Medium-High	Low	Increased reliability		
Gas Present	Medium-High	Low	Increased reliability and safety		
Particle	High	Low	Increased bearing life x 1.8		
Count (ISO)	20/17/12	16/14/11			
Water	Low	Very Low	Increased bearing life x 1.6		
Content	250 ppm	50 ppm			

Estimated viable improvements

Oil Purification. Estimated Oil Savings

1	Reservoir capacity	\rightarrow	Lts	5.000
2	Hourly manpower costs	\rightarrow		30 €/h
3	Oil cost per litre (direct and indirect)	\rightarrow		3 Lt/h
4	Yearly oil changes without Purifier	\rightarrow		1
5	Yearly oil changes with Purifier	\rightarrow	0	,20
6	Disposable oil (48 weeks, 70 Lts/wk)	\rightarrow	Lts	3.360
7	Manpower dedicated to drain (48 weeks, 5h/week)	\rightarrow		240 h
8	Manpower for a proper oil change	\rightarrow		20 h
9	Oil Savings thanks to Purifier (A1*(A4-A5)+A6)	\rightarrow	Lts	7.360
10	Oil Savings (A9*A3)	\rightarrow	€	22.80
11	Manpower Savings (A2*A7+A8*(A4-A5))	\rightarrow	€	7.216
12	Oil related Total Savings (A10+A11)	COL	€ Fluid Handling	29.296 SERVICES
			raid Haridillig	

Oil purification. Filter savings


1	Filter changes without Purifier (3 times a year)	\rightarrow	3/yr
2	Filter changes with Purifier (once every 2 years)	\rightarrow	0,5/yr
3	Manpower cost for filter changes	\rightarrow ϵ	800
4	Savings for filter changes (B3*(B1-B2))	\rightarrow ϵ	2.000

Oil purification. Repairs savings

1	Important repairs without Purifier (once/3yr)	\rightarrow	0,33/yr
2	Important repairs with Purifier (once/5yr)	\rightarrow	0,2/yr
3	Dedicated manpower (including inspection, calibration)	\rightarrow	300 h
4	Important reparis manpower costs (C3*A2)	\rightarrow	9.000
5	Spare parts per repair	\rightarrow ϵ	10.000
6	Production loss per outage day	\rightarrow ϵ	100.000
7	Manpower savings for repairs (C4*(C1-C2))	\rightarrow ϵ	1.200
8	Spare parts savings (C5*(C1-C2))	\rightarrow ϵ	1.333
9	Production loss savings (C6*(C1-C2))	\rightarrow ϵ	13.333
10	Total savings for better reliability (C7+C8+C9)	\rightarrow ϵ	15.867

Oil Purification. Total savings

Yearly benefit

Flushing Benefits. Allocating costs

Define three types of failure that might occur during the start-up of a turbine following scheduled maintenance

a. Minor failure. The post start-up check finds blocked filters, which must be replaced during the first two weeks.

Cost of 10,000 EUR per equipment item.

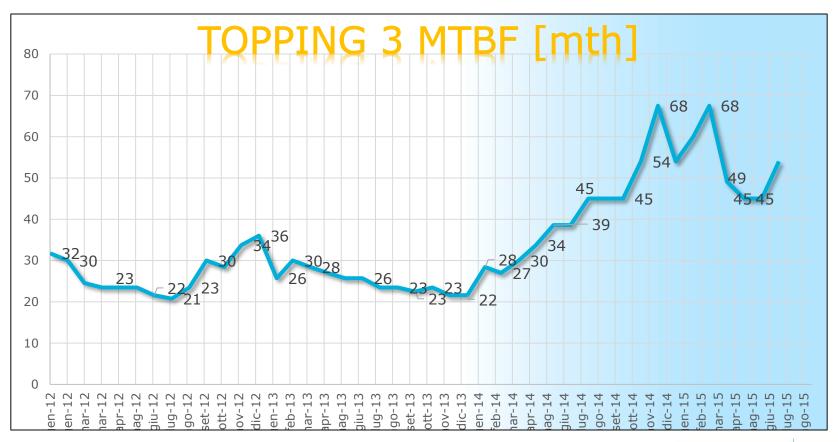
a. Significant failure. The post start-up check finds vibrations, resulting in lowered loads for a couple of weeks while controls are carried out.

Cost of 150,000 EUR

a. Catastrophic failure. The post start-up check discovers a bearing interference event resulting in a total outage and the need to change bearings. This results in 3 days of additional maintenance.

Cost of 3,400,000 EUR

Flushing Benefits. Allocate probabilities


Start-up failure	Conventional Flushing	ASTM Flushing
No failure occurs	45%	60%
Minor failure	40%	30%
Significant failure	10%	8%
Catastrophic failure	5%	2%

Flushing procedure	Cost of Failure					
Conventional	$10.000 \times 0,4 + 150.000 \times 0,1 + 3.400.000 \times 0,05 = 189.000$					
ASTM	$10.000 \times 0.3 + 150.000 \times 0.08 + 3.400.000 \times 0.02 = 83.000$					
Benefit	106.000 EUR per item modified					

Oil Mist. MTBF Evolution after installation

Increased MBTF for a Topping unit with Oil Mist

